Li, X.; Cheah, C.C., "Robotic Cell Manipulation Using Optical Tweezers With Unknown Trapping Stiffness and Limited FOV," Mechatronics, IEEE/ASME Transactions on , vol.PP, no.99, pp.1,9 doi: 10.1109/TMECH.2014.2364620
Abstract:
In existing control methods for optical tweezers, the trapping stiffness is usually assumed to be constant and known exactly. However, the stiffness varies according to the size of the trapped particle and is also dependant on the distance between the center of the laser beam and the particle. It is therefore difficult to
identify the exact model of the trapping stiffness. In addition, it is also assumed that the entire workspace is visible within the field of view (FOV) of microscope. During trapping and manipulation, certain image features such as the desired position may leave the FOV and therefore visual feedback is not available. In this paper, a robotic setpoint control technique is proposed for optical manipulation with unknown trapping stiffness and limited FOV of microscope. The proposed method allows the system to operate beyond the FOV and perform trapping and manipulation tasks without any knowledge of the trapping stiffness. The stability of the overall
system is analyzed by using Lyapunov-like method, with consideration of the dynamics of both the cell and the manipulator of laser source. Experimental results are presented to illustrate the performance of the proposed method.
License type:
PublisherCopyrights
Funding Info:
Agency For Science, Technology And Research of Singapore (A*STAR), (Ref. No. 1121202014)
Description:
(c) 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.